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Resum (CAT)
L’existència d’estructures diferencials no estàndards per a Sn no es va demostrar

fins l’any 1956, quan J. Milnor va donar una construcció expĺıcita d’una sèrie

d’exemples pel cas n = 7, [4]. Fins llavors, s’assumia que no hi havia cap diferència

fonamental entre esferes topològiques i esferes llises. El descobriment va suposar

un punt d’inflexió en la topologia algebraica i de varietats, que continuaria amb

la caracterització dels anomenats grups d’esferes homotòpiques, [2]. Un dels

resultats que va fer possible la prova de Milnor va ser el teorema de la signatura

de Hirzebruch, que dona una fórmula pel càlcul de la signatura d’una varietat

(diferenciable) compacta i orientada. L’objectiu d’aquest treball és contextualitzar

aquest teorema, aix́ı com mostrar el seu paper en la construcció de les primeres

7-esferes exòtiques.

Abstract (ENG)
The existence of non-standard smooth structures on Sn was not proven until 1956,

when J. Milnor presented an explicit construction for the case n = 7, [4]. Until

then, it was assumed that there was no fundamental difference between topological

and smooth spheres. This had profound implications in the field of manifold and

algebraic topology, and was immediately endorsed by subsequent research, which

lead to the characterization of the so called groups of homotopy spheres, [2]. One

of the results that made Milnor’s approach possible was Hirzebruch’s signature

theorem, which gives a formula to compute the signature of a (smooth) compact

oriented manifold. The aim of this work is to contextualize this theorem, as well as

to show its role in the construction of the first exotic 7-spheres.
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The signature theorem and the first exotic spheres

1. Classification of vector bundles

An n-real vector bundle is a triplet (π, E , B), where E (total space) and B (base space) are topological
spaces and π : E −→ B (projection) is a continuous map s.t. for each b ∈ B, π−1(b) ∼= Rn as real vector
spaces, and there exists a neighbourhood U containing b s.t. U×Rn ∼= π−1(U) through a homeomorphism h
that restricts to a linear isomorphism {b}×Rn −→ π−1(b) for each b ∈ U. We refer to the pair (U, h) as
a local coordinate system for ξ and we say that ξ is locally trivial.

The notion of an induced bundle along a map is ubiquitous in the constructions that are to follow
and will be used extensively throughout the work. Given a vector bundle ξ := (π, E , B), a topological
space B ′ and a continuous map f : B ′ −→ B, one can define another vector bundle, f ∗ξ := (π′, E ′, B ′),
with E ′ := {(b, e) ∈ B ′ × E | π(e) = f (b)} and π′ : E ′ −→ B ′, (b, e) 7−→ b. The vector space structure
in the fibers, (π′)−1(b), is defined by λ1(b, e1) + λ2(b, e2) = (b,λ1e1 + λe2). We refer to f ∗ξ as the
induced bundle or pullback bundle of ξ by f . One can show that f ∗ξ is locally trivial by expressing its local
coordinate systems in terms of local coordinate systems for ξ. The reader is referred to [5, §3] for a more
detailed description.

One of the most important results regarding real vector bundles is the following classification theo-
rem (see [5, §2–5], [1, §1]), which translates the problem of classifying isomorphic vector bundles into a
homotopy problem:

Theorem 1.1. Let Fn(B) be the set of n-vector bundles over a paracompact Hausdorff base B modulo
isomorphism, and let [B, Gn] be the set of homotopy classes of maps from B to Gn. Then, the map:

Φ: [B, Gn] −→ Fn(B)

[f ] 7−→ [f ∗γn]
(1)

is a bijection; where γn is the universal bundle over Gn(R∞).

To prove this theorem we need three important results. We will explain each of them and briefly detail
their proofs. The first one is necessary to ensure that Φ is well defined:

Proposition 1.2. Let ξ be a vector bundle with projection π : E −→ B, and let f , g : C −→ B be
continuous maps, with C paracompact1. If f and g are homotopic, then f ∗ξ ∼= g∗ξ.

Sketch of proof. The proof of Proposition 1.2 is based on the fact that every n-vector bundle over the
interval [0, 1] =: I is trivial. From this, one then shows that, given a vector bundle on C , there is an open
cover such that for each of its open sets Ui the restriction of the bundle to Ui × I is trivial. In particular,
on each of these open sets, the bundles at each end are clearly isomorphic. One then glues these local
isomorphisms to show that, given i0, i1 : C −→ C × I , ik(c) = (c , k), k = 0, 1, and a vector bundle ξ
over C × I , the induced bundles by i0 and i1 over C are isomorphic, which allows us to complete de proof.
Indeed, given f , g : C −→ B homotopic, and h : C × I −→ B a homotopy s.t. h0 = f , h1 = g , we have
f = h◦ i0, g = h◦ i1, which implies f ∗ξ ∼= i∗0 (h∗ξ), g∗ξ ∼= i∗1 (h∗ξ). This yields f ∗ξ ∼= g∗ξ, by the observation
on the induced bundles by i0 and i1.

1Paracompactness (every open cover admits a locally finite refinement) will be necessary to ensure we can use partitions
of unity arguments.
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The second of the aforementioned results is necessary to ensure that Φ is surjective:

Proposition 1.3. Any n-vector bundle over a paracompact Hausdorff base B admits a bundle mor-
phism f : ξ −→ γn.

Sketch of proof. This result is an extension of its “finite” counterpart, which ensures the existence of
a bundle morphism ξ −→ γnk (for a sufficiently large k), with γnk the canonical vector bundle over the
Grassmannian Gn(Rn+k) (following the notation in [5]). The latter assumes B compact and Hausdorff,
which allows us to take a finite covering {U1, ... , Ur} s.t. ξ | Ui is trivial for each i . Thus, each Ui admits
n linearly independent sections. By using partitions of unity, one can extend these sections over B, and find a
finite number of them, s1, ... , sn, ... , sn+k , s.t. for every b ∈ B, {s1(b), ... , sn+k(b)} generates Fb(ξ). Thus,
the map gb : (t1, ... , tn+k) 7−→ Σti si (b) between Rn+k and Fb(ξ) is surjective for each b. Denoting Vb :=
(ker gb)⊥ and fb the linear isomorphism given by gb | Vb, it is clear that the map f : e 7−→ (Vb, f −1b (e))
defines an isomorphism between ξ and γnk . The proof for the γn case works similarly, letting k go to infinity
and taking into account that the Vb’s are embedded in R∞, which allows to weaken the condition on the
base, B (hence the paracompactness).

The last of these three core results related to Theorem 1.1 proves that Φ is injective:

Proposition 1.4. Let ξ be an n-vector bundle over a paracompact Hausdorff base B, and let f , g : ξ −→ γn

be bundle morphisms. Then, f and g are homotopic.

Sketch of proof. From the proof of Proposition 1.3 it is clear that any morphism f : ξ −→ γn is of the
form e 7−→ (f̃ (fiber over e),f̃ (e)), where f̃ is a continuous map between E (ξ) and R∞ that is linear
injective over the fibers of ξ. Let f̃ , g̃ be these maps for f and g respectively. Two scenarios are distinguished,
based on the relation between f̃ and g̃ . Firstly, we assume f̃ (e) 6= λg̃(e) for any λ < 0, with e ∈ E (ξ).
Then, we can easily define a bundle homotopy h : E (ξ) × [0, 1] −→ E (γn) between f and g of the
form (e, t) 7−→ (h̃t (fiber over e), h̃t(e)), by setting h̃t(e) := (1 − t)f̃ (e) + tg̃(e). The condition on f̃
and g̃ allows to prove the injectivity of h̃t , and the fact that f and g are both bundle maps, ensures
continuity and linearity, which proves ht is a morphism for each t. Moreover, it can also be seen that h is
continuous, by inspecting its restriction to the bases. This proves h is a homotopy. Secondly, we make no
assumption on f̃ and g̃ . To prove that f and g are homotopic, we consider the maps d̃1, d̃2 : R∞ −→ R∞
s.t. d̃1(ei ) = e2i−1, d̃2(ei ) = e2i , for i = 1, 2, 3, ... , where the ej ’s are the canonical base vectors for R∞.
These maps induce two morphisms d1, d2 from γn to itself, that we can use to obtain r1 := d1 ◦ f and
r2 := d2 ◦g . It is clear that f̃ (e) 6= λr̃1(e), with λ < 0, for all e ∈ E (ξ), which implies f ' r1. Analogously,
g ' r2. We can verify that the same condition holds between r̃1 and r̃2. Thus, f ' g , as desired.

With these results, we can prove Theorem 1.1:

Proof of Theorem 1.1. Proposition 1.2 guarantees that Φ is a well defined map between [B, Gn] and Fn(B).
We can see that Φ is injective using Proposition 1.4. Indeed, [f ∗γn] = [g∗γn] implies that there exists
an isomorphism φ : E (f ∗γn) −→ E (g∗γn). Composing with ĝ : E (g∗γn) −→ E (γn) we obtain a bundle
morphism ϕ := ĝ ◦φ with induced base map ϕ = g ◦φ = g , given that φ = id, since φ is an isomorphism.
By Proposition 1.4, ϕ and f̂ are homotopic bundle morphisms, which yields [ϕ] = [g ] = [f ], as desired.

We now prove that Φ is surjective. Let [ξ] ∈ Fn(B). By Proposition 1.3 we know there exists a bundle
morphism f : ξ −→ γn of the form f (e) = (f̃ (fiber over e), f̃ (e)), with f̃ : E (ξ) −→ R∞ continuous and
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linear injective at the level of the fibers. This provides us with a homotopy class [f ] where f is the base
induced map associated to f , i.e. b 7−→ f̃ (Fb(ξ)). We observe that f

∗
γn and ξ are isomorphic, since f is

a morphism. Thus, Φ([f ]) = [ξ], as desired.

An n-complex vector bundle ω is defined similarly, with all R-linear objects and properties substituted by
their C-linear analogues. We also have a classification theorem for these bundles, similar to Theorem 1.1.
However, complex vector bundles present a much richer structure than their real counterparts. On one hand,
every complex vector bundle can be thought as a real vector bundle, by omitting its complex structure (we
can just think of its fibers as real vector spaces of twice the original dimension). We refer to this bundle
as the underlying real vector bundle of ω, and denote it by ωR. On the other hand, we can define the
conjugate bundle of ω, ω, as the complex vector bundle with same underlying bundle, i.e. ωR = ωR, but
with opposite complex structure, i.e. id : E (ω) −→ E (ω) is C-conjugate linear on fibers.

2. Characteristic classes

Theorem 1.1 is key to define characteristic classes for vector bundles. Let c be a cohomology class in
H i (Gn; R), with R some coefficient ring, and let ξ be a certain n-vector bundle with (paracompact Haus-
dorff) base B. From Theorem 1.1 there is a unique homotopy class [f ξ] ∈ [B, Gn] s.t. f

∗
ξγ

n ∼= ξ.

Let f
∗
ξ : H i (Gn; R) −→ H i (B; R) be the induced morphism between cohomology groups, and define2

c(ξ) := f
∗
ξc . This cohomology class in H i (B; R) is the characteristic class of ξ determined by c . From

this construction we make two important observations. First, the correspondence ξ 7−→ c(ξ) is natural
w.r.t. bundle morphisms, meaning that if we have g : B(ξ) −→ B(η) covered by a bundle morphism, then
c(ξ) = g∗c(η). This can be seen by noting that f η ◦ g and f ξ are homotopic. Since g is covered by a
bundle morphism, ξ ∼= g∗η, which allows us to write c(g∗η) = g∗c(η). Second, we note that given any
“natural” correspondence ξ 7−→ c(ξ), we will necessarily have c(ξ) = f

∗
ξc(γn), since the map f ξ is always

covered by a bundle morphism between ξ and γn. So this construction is as general as one can ask for and
tells us that the ring of characteristic cohomology classes of n-vector bundles over paracompact Hausdorff
base, with coefficients in R, is canonically isomorphic to H∗(Gn; R). Thus, the computation of H∗(Gn; R)
is relevant to the study of fundamental properties of n-vector bundles over paracompact Hausdorff base.
We will briefly present the most important 3 types of characteristic classes: the Stiefel–Whitney classes,
the Chern classes and the Pontrjagin classes.

From now on, we assume that all vector bundles have paracompact Hausdorff bases, unless otherwise
stated. The Stiefel–Whitney classes are characteristic classes of non oriented vector bundles, that are
defined in Z/2 cohomology groups. The existence and uniqueness of such classes is difficult to prove, and
is based on the computation of H∗(Gn;Z/2), which can be found, for example, in [5, §6–8]. Hence, most
often we find these classes defined axiomatically as follows:

Definition 2.1 (Stiefel–Whitney classes. Axiomatic definition).

Axiom I. Given a vector bundle ξ, there is a unique sequence of characteristic classes wi (ξ)∈H i (B(ξ);Z/2),
i = 0, 1, 2, ... , that we refer to as the Stiefel–Whitney classes of ξ. Moreover, w0(ξ) = 1 and if ξ is an
n-vector bundle, wi (ξ) = 0 for all i > n.

2Note that this is well defined, because the induced morphisms from two maps sharing homotopy type are equal.
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Axiom II. Naturality If f : B(ξ) −→ B(η) is covered by a bundle morphism between ξ and η, then:
wi (ξ) = f ∗wi (η), i = 0, 1, 2 ... , where f ∗ is the induced morphism between cohomology groups over Z/2.

Axiom III. Let ξ and η be two vector bundles over the same base, B, then:

wk(ξ ⊕ η) =
k∑

i=0

wi (ξ) ^ wk−i (η), k = 0, 1, 2, ... , (2)

where ^ denotes the cup product between cohomology classes.

Axiom IV. w1(γ11) 6= 0, where γ11 is the canonical line bundle over P1.

We define the total Stiefel–Whitney class w(ξ), for an n-vector bundle ξ, as the formal sum w0(ξ) +
w1(ξ) + · · · + wn(ξ) + 0 + · · · in the ring H

∏
(B(ξ);Z/2) of series of the form a0 + a1 + a2 + · · · , with

each ai ∈ H i (B(ξ);Z/2). This notation serves to express more synthetically Axiom III from Definition 2.1,
which can now be written as w(ξ ⊕ η) = w(ξ)w(η).

Some basic properties of the Stiefel–Whitney classes are:

Proposition 2.2.

(i) The Stiefel–Whitney classes of two isomorphic bundles are equal.

(ii) Let ε be the trivial bundle, then wi (ε) = 0 for i > 0.

(iii) Let η be a vector bundle and ε the trivial bundle over the same base, then wi (ε ⊕ η) = wi (η) for
i = 0, 1, 2, ...

(iv) Let ξ be an euclidian n-vector bundle with a non-zero section s : B −→ E ; then wn(ξ) = 0.

More generally, if ξ has k linearly independent sections, then wn−k+1(ξ) = · · · = wn(ξ) = 0.

From the axioms in Definition 2.1 we can compute the total Stiefel–Whitney class of the canonical line
bundle over the real projective space Pn, γ1n :

Proposition 2.3. w(γ1n) = 1 + a, where a is the generator of H1(Pn;Z/2).

Proof. Let j : P1 −→ Pn be the inclusion [x ] 7−→ [i(x)], with i the canonical inclusion R2 ↪−−→ Rn+1. The
map j is covered by the bundle morphism J between γ11 and γ1n that sends ([x ], v) ∈ E (γ11) to (j([x ]), i(v)) ∈
E (γ1n). By Axioms II and IV, we then have j∗wi (γ

1
n) = wi (γ

1
1) and j∗w1(γ1n) 6= 0, respectively. Since j∗ is a

morphism, w1(γ1n) 6= 0 necessarily, and by the structure of the cohomology ring H∗(Pn;Z/2), w1(γ1n) = a,
with a its generator. Finally, since dim γ1n = 1, wi (γ

1
n) = 0 for i > 1 and w0(γ1n) = 1, by Axiom I. Thus,

w(γ1n) = 1 + a, which concludes the proof.

Proposition 2.4. The total Stiefel–Whitney class of TPn is (1 + a)n+1, where a ∈ H1(Pn;Z/2) is the ring
generator of H∗(Pn;Z/2).

Proof. Assume that TPn is isomorphic to Hom(γ1n , γ⊥), where γ⊥ is the orthogonal complement of γ1n
in εn+1

Pn . Note then that Hom(γ1n , γ1n) is a trivial bundle of dimension 1, which implies:

TPn ⊕ ε1 ∼= Hom(γ1n , γ⊥)⊕ Hom(γ1n , γ1n) ∼= Hom(γ1n , γ1n ⊕ γ⊥)

∼= Hom(γ1n , εn+1) ∼= Hom(γ1n , ε1 ⊕ · · · ⊕ ε1)

∼= Hom(γ1n , ε1)⊕ · · · ⊕ Hom(γ1n , ε1) ∼= γ1n ⊕ · · · ⊕ γ1n ,

(3)
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where we used Hom(γ1n , ε1) ∼= γ1n and γ1n ⊕ γ⊥ ∼= εn+1, by construction. Thus, using property (iii) from
Proposition 2.2, Axiom III and Proposition 2.3 it is clear that:

w(TPn) = w(TPn ⊕ ε1) = w(γ1n ⊕ · · · ⊕ γ1n) = w(γ1n)n+1 = (1 + a)n+1. (4)

We now prove TPn ∼= Hom(γ1n , γ⊥). Let q : Sn −→ Pn be the quotient map. Note that Txq(v) =
T−xq(−v), which can be derived from the fact that q(x) = q(−x). Since q is a local diffeomorphism,
Txq is a linear isomorphism for each x . This allows identifying TPn with the pairs {(x , v), (−x ,−v)}
s.t. ‖x‖ = 1 and 〈x , v〉 = 0 through {(x , v), (−x ,−v)} 7−→ ([x ], Txq(v)). Observe that each of these
pairs defines a linear map from 〈x〉 = F[x](γ

1
n) to 〈x〉⊥ = F[x](γ

⊥), determined by x 7−→ v . We can

identify this map with the corresponding element in F[x](Hom(γ1n , γ⊥)). This clearly allows defining a

bundle isomorphism between TPn and Hom(γ1n , γ⊥):

ϕ : TPn −→ E (Hom(γ1n , γ⊥))

([y ], u) ∼ {(x , v), (−x ,−v)} 7−→ L[y ],u : F[y ](γ
1
n) −→ F[y ](γ

⊥), x 7−→ v
(5)

with x = y
‖y‖ and v = Txq−1(u).

Chern classes are characteristic classes associated to complex vector bundles. They are constructed as
in the real case, but using the corresponding classification theorem, and are cohomology classes over Z.
We provide, as for the Stiefel–Whitney classes, an axiomatic definition:

Definition 2.5 (Chern classes. Axiomatic definition).

Axiom I. Given a complex vector bundle ω, there is a unique sequence of characteristic classes ci (ω) ∈
H2i (B(ξ);Z), i = 0, 1, 2, ... , that we refer to as the Chern classes of ω. Moreover, c0(ω) = 1 and if ω is
an n-complex vector bundle, ci (ω) = 0 for all i > n.

Axiom II. Naturality. If f : B(ω) −→ B(ω′) is covered by a bundle morphism between ω and ω′,
then: ci (ω) = f ∗ci (ω

′), i = 0, 1, 2 ...

Axiom III. Let ω and ω′ be two complex vector bundles over the same base, B, then:

ck(ω ⊕ ω′) =
k∑

i=0

ci (ω) ^ ck−i (ω
′), k = 0, 1, 2, ... (6)

Axiom IV. c1(γ11) 6= 0, where γ11 is the canonical line bundle over CP1.

A total Chern class c(ω) is defined for complex vector bundles in the same way as in the Stiefel–
Whitney case. Chern classes share properties (i)–(iii) from Proposition 2.2 with the Stiefel–Whitney classes.
However, there is a distinctive feature that we need to present for future developments:

Proposition 2.6. Given a complex vector bundle ω, ck(ω) = (−1)kck(ω), k ≥ 0, where ω is the conjugate
bundle of ω.

Proposition 2.7. The total Chern class of TCPn is (1+t)n+1, where t = −c1(γ1n), and γ1n is the canonical
line bundle over CPn.
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Sketch of proof. We can easily follow the steps in Proposition 2.4, to show that:

TCPn ⊕ ε1 ∼= Hom(γ1n , ε1)⊕
n+1)
· · · ⊕ Hom(γ1n , ε1) ∼= γ1n ⊕

n+1)
· · · ⊕ γ1n, (7)

where we have used that the dual of a complex vector bundle equipped with an hermitian metric is
canonically isomorphic to its conjugate bundle. This can be seen by noting that the map v 7−→ 〈·, v〉
between E (ω) and E (Hom(ω, ε1)) is a (complex) bundle isomorphism. Thus, using Proposition 2.6:

c(TCPn) = c(γ1n)n+1 = (1− c1(γ1n))n+1 = (1 + t)n+1. (8)

Pontrjagin classes are characteristic cohomology classes over Z for real, possibly oriented, vector bun-
dles. They can be thought as the oriented analogues of the Stiefel–Whitney classes, as they allow to
distinguish between different vector bundle orientations. They are defined through Chern classes as follows:

pi (ξ) := (−1)ic2i (ξ ⊗ C) ∈ H4i (B(ξ);Z), i = 0, 1, 2, ... , (9)

where ξ is a real vector bundle of dimension n, and ξ ⊗C its complexification, that is, the complex vector
bundle over the same base whose fibers are the products Fb(ξ)⊗RC (treating C as a vector space over R).
By Axiom I of the Chern classes, it is clear that pi (ξ) = 0 for all i > n/2. Hence, the total Pontrjagin class
of ξ can be written as: p(ξ) := 1 + p1(ξ) + p2(ξ) + · · ·+ p⌊n

2

⌋(ξ).

As they are derived from Chern classes, Pontrjagin classes also share properties (i)–(iii) from Proposi-
tion 2.2. However, they exhibit two more properties:

Proposition 2.8.

(i) Given two real vector bundles ξ, η, p(ξ ⊕ η) = p(ξ)p(η) modulo order 2 terms.

(ii) Let ω be an n-complex vector bundle. Then, the Chern classes of ω determine the Pontrjagin classes
of ωR, through the following relation:

pk(ωR) = ck(ω)2 − 2ck−1(ω)ck+1(ω) + · · ·+ (−1)k2c2k(ω). (10)

Alternatively, we can write:

1− p1(ωR) + p2(ωR)− · · ·+ (−1)npn(ωR) = c(ω)c(ω) modulo order 2 terms. (11)

Proposition 2.8 is, essentially, a consequence of Proposition 2.6 combined with the following bundle
isomorphisms: ξ ⊗C ∼= ξ ⊗ C, with ξ a real vector bundle (property (i)); and ωR ⊗C ∼= ω ⊕ ω, with ω an
n-complex vector bundle (property (ii)).

Proposition 2.9. The total Pontrjagin class of the underlying vector bundle of TCPn is 1 +
(n+1

1

)
t2 +(n+1

2

)
t4 + · · ·+

(n+1⌊
n
2

⌋)t2⌊n2⌋, where t = −c1(γ1n). Alternatively, p(TCPn
R) = (1 + t2)n+1.

Proof. Denote τ := TCPn. From Propositions 2.7 and 2.8(ii), it is clear that:

c(τ)c(τ) = (1 + t)n+1(1− t)n+1 = (1− t2)n+1 = 1− p1(τR) + p2(τR)− · · ·+ (−1)npn(τR) (12)

modulo order 2 terms. Taking into account that t ∈ H2(CPn;Z) and comparing elements with same
dimension in cohomology, we find pk(τR) =

(n+1
k

)
t2k , k = 0, 1, ... , n, which allows us to write p(τR) =

(1 + t2)n+1. Finally, using H i (CPn;Z) ∼= 0 for i > 2n, we obtain the result.
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3. Hirzebruch signature theorem

Manifold cobordism is a well known equivalence relation between closed differentiable manifolds. Given
two closed differentiable n-manifolds (n-manifolds from now on) M1, M2, we say they belong to the
same cobordism class, or that they are cobordant, and denote it M1 = M2, if M1 tM2 is the boundary
of a compact (n + 1)-manifold, N, that we refer to as a cobordism between M1 and M2. Similarly,
two closed n-manifolds belong to the same oriented cobordism class if M1 t (−M2) is the boundary
of a compact oriented (n + 1)-manifold (through an orientation preserving diffeomorphism). These are
equivalence relations (see [5, 3]) over closed manifolds and closed oriented manifolds respectively. We can
provide a brief explanation to justify why this may be true for the oriented case: M is cobordant to itself,
because M t (−M) = ∂(M × [0, 1]); if W is a cobordism between M1 and M2, it is clear that −W is a
cobordism between M2 and M1; finally, given W1, W2 cobordisms between M1, N and N, M2 respectively,
we have that W1 tW2/∼, conveniently identifying N with −N (using the collar neighborhood theorem),
is a cobordism between M1 and M2.

One of the major contributors to cobordism theory was R. Thom, who helped establishing its foun-
dations, but also gave birth to some of its most important results. The classification of closed (oriented)
manifolds up to cobordism was a consequence of the efforts by R. Thom, L. Pontrjagin and C. T. C. Wall,
who were able to connect characteristic classes with cobordism classes in a brilliant manner. To present
this result, we need to introduce the notion of characteristic numbers:

Definition 3.1 (Stiefel–Whitney numbers and Pontrjagin numbers). Let M be a closed m-manifold and N a
closed oriented 4n-manifold. Let I = (i1, ... , ir ) and J = (j1, ... , js) be partitions of m and n respectively,
and define:

wI [M] := 〈wi1(TM) · · ·wir (TM),µ〉, pJ [N] := 〈pj1(TN) · · · pjs (TN), ν〉, (13)

where µ ∈ Hm(M;Z/2) and ν ∈ H4n(N;Z) are the fundamental homology classes of M and N. The
numbers wI [M] ∈ Z/2 and pI [N] ∈ Z are the Stiefel–Whitney numbers of M and the Pontrjagin numbers
of N, respectively. If dim N 6≡ 0 (4), we say that the Pontrjagin numbers of N vanish.

Theorem 3.2 (Classification of closed oriented manifolds modulo oriented cobordism). Stiefel–Whitney
and Pontrjagin numbers completely classify closed oriented manifolds modulo oriented cobordism. Thus,
given two closed oriented n-manifolds M1 and M2, they belong to the same oriented cobordism class if and
only if wI [M1] = wI [M2] and pJ [M1] = pJ [M2] for all partitions I , J of n and n

4 , respectively.

Both oriented and unoriented cobordisms give rise to a group structure between cobordism classes of
closed manifolds of the same dimension, by means of the disjoint union. Since, we are most interested in
the oriented case, we present these groups and the graded ring they form, ΩSO

? , which is an important
object in the subsequent discussion.

Definition 3.3 (Oriented cobordism groups and oriented cobordism ring). We define the oriented cobordism
group of dimension n as the set ΩSO

n := {M | M closed oriented n-manifold} together with the following
operation: M + N := M t N. (ΩSO

n , +) is an abelian group with identity ∅.

We define the oriented cobordism ring as the graded commutative ring ΩSO
? :=

⊕∞
n=0 ΩSO

n , with
component-wise sum and product given by the cartesian product between manifolds: M1×M2 := M1 ×M2.
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To prove that the sum of oriented cobordism classes is well defined one must see that if W = W1tW2,
with W1, W1, W compact oriented (n + 1)-manifolds, then ∂W = ∂W1 t ∂W2. On the other hand, given
a cobordism W between M1, M2, and given a closed oriented manifold N, W ×N is a cobordism between
M1 × N and M2 × N. Thus, with Mi = Ni , i = 1, 2, M1 ×M2 = N1 ×M2 = N1 × N2, which proves the
product is also well defined. Note also that ΩSO

? is commutative in the graded sense, because M1×M2 and
(−1)dimM1 dimM2M2 ×M1 are diffeomorphic as oriented manifolds. The structure of ΩSO

? was thoroughly
studied by R. Thom, whose findings can be summarized as follows (see [5, §16–17]):

Theorem 3.4.

(i) ΩSO
n is a finite group for n ≡ 0 (4) and is finitely generated with rank p(k), the number of partitions

of k, when n = 4k. Moreover, in the case where n = 4k, the products CP2i1 × · · · × CP2ir , with
I = (i1, ... , ir ) partition of k, are a set of independent generators.

(ii) ΩSO
? ⊗Q is a polynomial ring over Q generated by CP2,CP4,CP6, ...

Note that (ii) is a direct consequence of (i). Indeed, since the Z-module product ΩSO
? ⊗Q is effectively

eliminating the torsion elements in ΩSO
? , we are left, by (i), with the groups ΩSO

4k , k ≥ 0; given that these
are generated by the products CP2i1×· · ·×CP2ir , the results follows. Note also that in ΩSO

? ⊗Q all products
are commutative, given that dimCP2i ≡ 0 (2).

An important cobordism invariant, other than Pontrjagin and Stiefel–Whitney numbers, is the signa-
ture. In fact, this section is devoted to Hirzebruch’s signature theorem, which presents a formula for the
computation of the signature of a manifold, in terms of its Pontrjagin numbers.

Definition 3.5 (Signature). The signature of a compact oriented manifold M of dimension 4k, is the
signature of the rational bilinear symmetric form:

H2k(M;Q)× H2k(M;Q) −→ Q
(u, v) 7−→ 〈u ^ v ,µ〉,

(14)

where µ is the fundamental homology class of M over Q, consistent with its orientation. We denote it
by σ(M). If dim M 6≡ 0 (4), we define σ(M) := 0.

From now on, given a manifold M, we will write simply M to refer to its cobordism class.

Lemma 3.6. The map M 7−→ σ(M) determines an algebra homomorphism between ΩSO
? ⊗Q and Q.

Lemma 3.6 is a consequence of three important properties of the signature: σ is an additive and
multiplicative function with respect to the corresponding operations between cobordism classes, i.e. σ(M1+
M2) = σ(M1) + σ(M2) and σ(M1 ×M2) = σ(M1)σ(M2); and σ is a cobordism invariant, that is, if M1

and M2 belong to the same cobordism class, then σ(M1) = σ(M2) (alternatively σ(M) = 0 if M = ∅).

To establish Hirzebruch’s theorem it is necessary to introduce the notion of multiplicative sequences:

Definition 3.7. Let R be a commutative ring with unity and let A? :=
⊕∞

i=0 Ai be a graded commutative
(in the classical sense) R-algebra. Let A

∏
be the set of formal series a0+a1+a2+· · · , with each ai ∈ Ai , and

define A
∏
1 := {a ∈ A

∏
| a0 = 1}. Let {Kn(x1, ... , xn)}n≥1 be a sequence of polynomials with coefficients

in R s.t. Kn(x1, ... , xn) is homogoneous of degree n with dim xi = i for each i . Given a ∈ A
∏
1 , define
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K (a) := 1 + K1(a1) + K2(a1, a2) + · · · ∈ A
∏
1 . We say that {Kn}n≥1 is a multiplicative R-sequence, if, for

any R-algebra A? of the form described, K (ab) = K (a)K (b) for all a, b ∈ A
∏
1 . We may write Ki (a) to

denote Ki (a1, ... , ai ), with K0(a) = 1.

An important result regarding multiplicative sequences is the following lemma (see [5, p. 221]):

Lemma 3.8. Let R be a commutative ring with unity, and let f (t) = 1+ r1t + r2t2 + · · · be a formal power
series with coefficients in R. Then, there exists a unique multiplicative R-sequence {Kn} s.t. K (1+t) = f (t).
We refer to K as the multiplicative sequence associated to f (t).

Another important cobordism invariant, arising from multiplicative sequences, and with similar proper-
ties as the signature, is the K -genus:

Definition 3.9. Let M be a compact oriented 4n-manifold, and let {Kn} =: K be a multiplicative Q-se-
quence. We define the K -genus of M, K [M], as the number 〈Kn(p1, ... , pn),µ4n〉, where pj := pj(TM) for
each j , and µ4n is the fundamental class of M. If the dimension of M is not a multiple of 4, K [M] := 0.

Note that the K -genus is just a rational combination of some Pontrjagin numbers of M. Since Pontrjagin
numbers are additive under cobordism sum (which can be easily proven using that they are cobordism
invariants and also H i (M1 tM2) ∼= H i (M1) ⊕ H i (M2)), it is clear that M 7−→ K [M] is also additive. It
can also be seen that K [M1 ×M2] = K [M1]K [M2], using a much harder result from homological algebra
known as Künneth theorem. Thus, similar to the case of the signature, we have that:

Lemma 3.10. Given a multiplicative Q-sequence K , the map M 7−→ K [M] determines an algebra homo-
morphism between ΩSO

? ⊗Q and Q.

Theorem 3.11 (Hirzebruch’s signature theorem [5, §19]). Let L := {Ln} be the multiplicative sequence
associated to the power series:

f (x) =

√
x

tanh
√

x
= 1 +

1

3
x − 1

45
x2 + · · ·+ (−1)n−122nBnxn

(2n)!
+ · · · (15)

Then, the signature, σ(M), of a compact oriented manifold M, equals the L-genus of M, L[M]. Hence,
for a compact oriented 4n-manifold M, we have:

σ(M) = 〈Ln(p1, ... , pn),µ4n〉. (16)

Proof. By Lemmas 3.6 and 3.10, both the signature and the L-genus define homomorphisms between ΩSO
? ⊗

Q and Q. Thus, it suffices to prove the result for a set of generators of ΩSO
? ⊗Q. Using Theorem 3.4(ii),

it is clear that we only have to show that σ(CP2n) = L[CP2n], n ≥ 1. Since H2n(CP2n;Q) is generated
by tn, with t = −c1(γ1n), it is clear that σ(CP2n) = 〈t2n,µ4n〉. On the other hand, by Proposition 2.9, the
total Pontrjagin class of CP2n is (1 + t2)2n+1. Now, since L is the multiplicative sequence associated to
f (x) =

√
x/ tanh

√
x , by Lemma 3.8: L((1 + t2)2n+1) = L(1 + t2)2n+1 = (t/ tanh t)2n+1, where we use

dim t2 = 1 in the Q-algebra
⊕∞

i=0 H4i (CP2n;Q). Thus:

L[CP2n] = 〈Ln(p1, ... , pn),µ4n〉 =
〈(

t
tanh t

)2n+1
,µ4n

〉
= C 〈t2n,µ4n〉 = Cσ(CP2n), (17)
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where C is the coefficient of t2n in the power series of (t/ tanh t)2n+1. Note that C coincides with the
−1 degree coefficient of the power series around 0 of the complex function 1/(tanh z)2n+1. Hence, by the
residue theorem:

C =
1

2πi

∮
γ

1

(tanh z)2n+1
dz , (18)

with γ a sufficiently small, positively oriented, regular closed path around the origin. Consider now the
substitution u := tanh z , with dz = du/(1− u2), and note that:

C =
1

2πi

∮
γ′

1

u2n+1

du

1− u2
=

1

2πi

∮
γ′

1 + u2 + u4 + · · ·
u2n+1

du = +1, (19)

where we are again using the residue theorem. This concludes the proof, since L[CP2n] = Cσ(CP2n).

4. Exotic structures

One of the major mathematical achievements of the second half of the 20th century was the discovery
of topological spheres that were not diffeomorphic to the standard sphere. The first examples, the exotic
7-spheres, were unveiled by J. Milnor in 1956 (see [4]). This had profound implications in the field of
manifold and algebraic topology, since, until Milnor’s paper, a fundamental difference between topological
and differentiable spheres was not expected. The purpose of this section is to introduce Milnor’s construction
and to link what has been exposed so far with the existence of non-standard smooth structures in S7. Milnor
uses G -bundles, which are based on the concept of vector bundles, but allow fibers to be arbitrary topological
spaces, connected through transition functions of the form (b, x) 7−→ (b, gij(b)x), where g : Ui ∩Uj −→ G
is a continuous map and G is a subgroup of homeomorphisms from F (the base fiber) to itself. For
G -bundles over Sn, there is a classification theorem, analogous to the one presented for vector bundles,
which establishes a one-to-one correspondence between bundle isomorphism classes and homotopy classes
in πn−1(G ). As π3(SO(4)) ∼= Z⊕Z (see [7]), one can parametrize SO(4)-bundles over S4 with fiber S3 by
two integers, and denote a set of representatives by ζhj , h, j ∈ Z. One can also write for the corresponding
total spaces, E (ζhj) =: Mhj , an explicit covering set of local charts, together with their transition functions.
This allows Milnor to apply a deep result from Reeb (see [6, p. 11]) to show that if h + j = 1 and h− j = k,
with k odd, then:

Mk := M1+k
2 ,

1−k
2

is homeomorphic to S7.

Let now M be a 7-manifold, oriented by µ ∈ H7(M), s.t. H3(M) = H4(M) = 0 (with coefficients in Z
from now on). Let B be a 8-manifold s.t. ∂B and M are diffeomorphic through an orientation-preserving
diffeomorphism. Then, from the long exact sequence of the pair (B, M) we deduce that j? : H4(B, M) −→
H4(B) is an isomorphism, which allows us to define: q(B) := 〈(j?)−1(p1(TB))2, ν〉, where ν ∈ H8(B, M)
is the fundamental class of the pair (B, M), compatible with the orientation of M, i.e. ∂ν = µ. Define
also τ(B) as the signature of the quadratic form over H4(B, M)/torsion, given by α 7−→ 〈α2, ν〉. Under
these conditions, the following is true:

Proposition 4.1. The residue of 2q(B)− τ(B) modulo 7 is independent of B.

This is a direct consequence of Hirzebruch’s signature theorem, and is essential to prove the existence
of a non-standard smooth structure for S7.
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Sketch of proof (Proposition 4.1). Let B1, B2 be two 8-manifolds s.t. ∂B1 = ∂B2 = M. Define C :=
B1 t (−B2)/∼, where ∼ identifies ∂B1 with ∂(−B2). Since C is a closed 8-manifold, we can apply
Hirzebruch’s signature theorem to see that:

σ(C ) =
〈

1
45(7p2(C )− p2

1(C )), ν
〉
, (20)

where ν is an orientation for C compatible with the corresponding orientations, ν1 and −ν2, for B1 and −B2

respectively. This implies 2〈p1(C )2, ν〉 − σ(C ) ≡ 0 (7). It is not difficult to see, through some homological
algebra computations and using the aforementioned conditions, that the quadratic form associated to C ,
over H4(C ), is the direct sum of the quadratic forms over H4(B1, M) and H4(B2, M), as defined above,
reversing the sign of the latter. This clearly implies σ(C ) = τ(B1) − τ(B2) and, similarly, 〈p1(C )2, ν〉 =
q(B1)− q(B2), which proves the statement.

Thus, under the stated conditions, we can define λ(M) := 2q(B)−τ(B) ∈ Z/7. This invariant provides
a simple criterion to determine whether or not M and S7 can be diffeomorphic:

Proposition 4.2. If λ(M) 6= 0, M cannot be diffeomorphic to the boundary of an 8-manifold B with
H4(B) = 0. In particular, if λ(M) 6= 0, M and S7 are not diffeomorphic.

Since H4(B) ∼= H4(B, M), the quadratic form over H4(B, M)/torsion is 0, which yields τ(B) = q(B) =
0 and, consequently, λ(M) = 0. If M and S7 are diffeomorphic, we can choose B = D8 and use H4(D8) = 0
to conclude. Let now M be one of the aforementioned Mhj . It is clear that the total space, Nhj , of the
SO(4)-bundle, ηhj , that results from substituting the S3 fibers in ζhj by 4-disks, D4, satisfies ∂Nhj = Mhj .
A rather complex computation shows that p1(TNhj) = c(h − j)β, where c ∈ Z and β is a generator of
H4(Nhj) ∼= Z. This can be further used, for the spaces Mk , to show that q(Nk) = δc2k2, with δ = ±1.
Finally, noting that τ(Nk) = δ, it is clear that λ(Mk) ≡ δ(2c2k2 − 1) (7). Since the squares in Z/7
are 0, 1, 2, 4, we may choose k = 0, 3, 1, 5 to obtain λ(Mk) 6= 0. This proves the following:

Theorem 4.3. S7 admits at least one non-standard (exotic) smooth structure.
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